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Abstract 

We investigate the temperature anisotropy in highly-magnetized plasma within the framework of kinetic theory. We 

explicitly  calculate the electronic distribution function for a magnetized plasma, taking into account  electron-ion (e-i) 

collisions. The basic equation in this investigation is the Fokker-Planck (F-P) equation, where some justified 

approximations for fusion and astrophysical magnetized plasmas are used. By computing the second moment of this 

distribution function, we have expressed the electron temperatures in the parallel direction as well as in the plane 

perpendicular  to the magnetic field. We show that the temperature is anisotropic and that this anisotropy is due to a 

competition between the magnetic field and the collision effects. We also present the numerical results and interpret them 

for illustration. Our theoretical analysis is applicable in wave and instability studies in fusion and astrophysical plasma, 

particularly in magnetized inertial fusion (MIF) scheme. 
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1. Introduction 

A magnetized plasma is one in which an ambient 

magnetic field is strong enough to significantly alter 

particle trajectories. This kind of plasma is a good 

environment for different physical phenomena which 

have  intensively been studied in literature, namely, 

Alfvén wave [1,2], cyclotron instabilities [3], and magnetic 

field reconnection [4,5] .            

Magnetized  plasma, both in astrophysical medium 

or that created in laboratories, generally presents an  

anisotropy in temperature [6] which  can be interpreted 

in the microscopic way by an anisotropic distribution 

function.  

In the literature, this distribution function is usually 

assumed to be a bi-Maxwellian distribution function: 

 

 

𝑓𝐵𝑀 𝑣∥, 𝑣⊥ =
𝑛𝑒

𝑇⊥𝑇∥

1
2

exp  −
𝑚𝑒𝑣∥

2

2𝑇∥
 exp  −

𝑚𝑒𝑣⊥
2

2𝑇⊥
 ,             

(1) 

where 𝑚𝑒 , 𝑛𝑒 , 𝑇∥ , 𝑇⊥ , 𝑣∥  and 𝑣⊥  are respectively 

the electron mass, the electronic density, the parallel 

temperature, the perpendicular temperature, the parallel 

velocity and the perpendicular velocity.  

The aim of the present paper is  to  analyze   the 

electron temperature anisotropy for magnetized plasma, 

in the frame of the kinetic theory.  This investigation 

could have applications in several research axes, such as 

magnetic fusion experiments [7,8].
 

The magnetized plasma appears at the microscopic 

level as a set of charged particles of different species in 

thermal motion at different velocities, where each particle 

has a fast gyration motion around the magnetic field line 

at a perpendicular velocity 𝑣⊥, and a parallel motion not 

affected by the magnetic field. The time dependent 

electron velocity can be written as: 

𝑣  𝑡 = 𝑣 ∥ + 𝑣 ⊥ 𝑡 ,  where 𝑣 ⊥ 𝑡  is the time 

varying perpendicular velocity  which is proportional to 

exp 𝑖𝜔𝑐𝑒 𝑡 ,  where 𝜔𝑐𝑒 =
e𝐵

𝑚𝑒
 is the electron cyclotron 

frequency and 𝐵  is the applied magnetic field . Note  

here that 𝜔𝑐𝑒   is the same for all electrons in the plasma 

[9]. In order to compute the electronic distribution 

function, we consider for the  one particle kinetic theory 

in 6D phase space:  (𝑟 , 𝑣 ). The Fokker Planck (F-P) 

equation   is then the appropriate  equation for 

describing these kinds of plasmas [10], where the 

distribution depends on the three independent 
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parameters: 𝑣∥, 𝑣⊥  and the time 𝑡.  

 In the present investigation, we  consider that 

the time evolution of the electron distribution function is 

characterized by two time scales as was  the case in our 

previous works [11-15]: a short time scale relative to the 

cyclotron motion of electrons around the magnetic field 

lines, 𝜏𝑐𝑒 =
1

𝜔𝑐𝑒
 (which has typical values of 

𝜏𝑐𝑒~10−11  𝑠  for magnetic thermonuclear fusion 

experiments, where 𝜔𝑐𝑒~1011  𝑠−1 )  and  a relatively 

long  hydrodynamic  time scale (𝜏ℎ𝑦 ≫ 𝜏𝑐𝑒 ). 

This paper is organized as follows: in section 2, we 

present the basic equation used in  this investigation. In 

section 3, the equation of the distribution function is 

analytically calculated under some justified 

approximations. In section 4, we compute the high 

frequency distribution function. In section 5, we compute 

the static distribution function. In section 6, we compute 

the parallel  temperature and  the perpendicular one, 

where the  anisotropy in temperature is explicitly 

presented. Finally, in section 7, a conclusion is given for  

the obtained results.  

 

2. Basic equation 

The basic equation in this investigation is the 

Fokker-Planck ( F-P) equation. The F-P equation can be 

presented for a homogeneous plasma, in the presence of 

the Lorentz force due to a statistic magnetic field, 

𝐹 𝐿(𝑡) = −𝑒𝑣 (𝑡) × 𝐵   , taking into account  the e-i 

Coulomb collisions, following the  Braginskii notation 

[16,17]  as follows: 

𝜕𝑓

𝜕𝑡
+

𝐹 𝐿

𝑚𝑒
.
𝜕𝑓

𝜕𝑣  
= 𝐶𝑒𝑖 𝑓 ,                     (2) 

where 𝑓 = 𝑓(𝑣 , 𝑟 , 𝑡)  is the electrons distribution 

function and  𝐶𝑒𝑖 𝑓   represents the e-i operator. Note 

here that  the distribution function depends on the three 

independent parameters (𝑣∥,  𝑣⊥  and 𝑡) and the Lorentz 

force is a time dependent force. 

Without loss of generality we consider the magnetic 

field to be oriented in the x direction, 𝐵  =𝐵𝑥 , and the 

electrons to oscillate in the  𝑦, 𝑧  plane, where: 

 𝑣⊥      𝑡 = 𝑣⊥ 𝑧 − 𝑖𝑦  exp 𝑖𝜔𝑐𝑒 𝑡 .With this geometry, 

the Lorentz force is given by: 

 𝐹 𝐿 = −𝑚𝑒𝜔𝑐𝑒𝑣⊥ 𝑦 + 𝑖𝑧  exp 𝑖𝜔𝑐𝑒 𝑡 .   (3) 

This force is similar to that due to the presence of a 

circularly-polarized laser wave in the plasma [11].
 

Taking 

Eq. (3) into account, the F-P equation  (Eq. 2) is written 

as: 

𝜕𝑓

𝜕𝑡
− 𝜔𝑐𝑒𝑣⊥  

𝜕𝑓

𝜕𝑣𝑦
+ 𝑖

𝜕𝑓

𝜕𝑣𝑧
 exp 𝑖𝜔𝑐𝑒 𝑡 = 𝐶𝑒𝑖 𝑓 .                                        

(4) 

We point out that this equation (Eq. 4) is similar to that 

which characterizes a homogenous plasma in interaction 

with a circularly polarized laser wave [11, 13].
 

Then we be 

expecting an anisotropy in temperature due to the 

presence of magnetic field. 

 

3. Distribution function 

The motion of individual charged particle in plasma,  

in the presence of a static magnetic field, can be 

decomposed into a parallel motion  not affected by the 

magnetic field and a perpendicular gyration motion.  

The gyration period time is typically very small 

compared to the hydrodynamic evolution time of the 

plasma. Then it is judicious to separate the time scales in 

the F-P equation, (Eq. 4), by assuming that the distribution 

function is the sum of oscillating distribution function and 

a static one  relative to evolution of hydrodynamic 

parameters in the  plasma. Hence, we write: 

 

𝑓 = 𝑓(𝑣∥, 𝑣⊥  , 𝑡) = 𝑓𝑠(𝑣∥, 𝑣⊥  , 𝑡) + Real  𝑓ℎ(𝑣 , 𝑡) ,               

(5) 

𝑓ℎ 𝑣 , 𝑡 = 𝑓ℎ 𝑣∥, 𝑣⊥   exp 𝑖𝜔𝑐𝑒 𝑡 .            (6) 

The separation of time scales in the F-P equation, 

(Eq. 4 ), using Eq. (5), gives rise to a system of two coupled 

equations: a fast time variation  equation which 

represents  the spatiotemporal evolution of 𝑓ℎ  and a 

slow time variation  equation representing the 

spatiotemporal evolution of 𝑓𝑠 . Thus: 

𝜕𝑓ℎ

𝜕𝑡
− 𝜔𝑐𝑒𝑣⊥  

𝜕𝑓𝑠

𝜕𝑣𝑦
+ 𝑖

𝜕𝑓𝑠

𝜕𝑣𝑧
 ex p 𝑖𝜔𝑐𝑒 𝑡  = 

𝐶𝑒𝑖 𝑓
ℎ ,                             (7)      

This equation is obtained by regrouping the fast 

time-varying terms, proportional to exp 𝑖𝜔𝑐𝑒 𝑡 ,  in Eq. 

(4).   

The equation of the static distribution function  

is obtained by taking the average of Eq. (4) on the 

cyclotron period, 𝜏𝑐𝑒 =
2𝜋

𝜔𝑐𝑒
, so:  
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𝜕𝑓𝑠

𝜕𝑡
− 𝜔𝑐𝑒𝑣⊥  

Real exp 𝑖𝜔𝑐𝑒 𝑡  ×

Real  
𝜕𝑓ℎ

𝜕𝑣𝑦
+ 𝑖

𝜕𝑓ℎ

𝜕𝑣𝑧
 
 𝜏𝑐𝑒 = 𝐶𝑒𝑖 𝑓

𝑠 .  

                                     (8) 

Here the symbol  𝑋 𝜏𝑐𝑒 =
1

𝜏𝑐𝑒
 𝑋𝑑𝑡
𝜏𝑐𝑒

0
 stands for the 

average value over the cyclotron period time.  

 

 

4. High-frequency distribution function 

Using expression (6), 𝑓ℎ  can be calculated 

from equation (7), where 
𝜕𝑓ℎ

𝜕𝑡
= 𝑖𝜔𝑐𝑒𝑓

ℎ  , as a function 

of 𝑓𝑠 . Thus: 

𝑖𝜔𝑐𝑒𝑓
ℎ − 𝐶𝑒𝑖 𝑓

ℎ = 𝜔𝑐𝑒𝑣⊥  
𝜕𝑓𝑠

𝜕𝑣𝑦
+ 𝑖

𝜕𝑓𝑠

𝜕𝑣𝑧
 exp 𝑖𝜔𝑐𝑒 𝑡 .                

(9) 

The collision operator, 𝐶𝑒𝑖(𝑓),  is expressed in Landau 

form of the F-P collision operator  [18,19,20]  as: 

𝐶𝑒𝑖 𝑓 =
𝐴

𝑣3

𝜕

𝜕𝑣𝑗
 𝑣𝑗𝑣𝑘 − 𝑣2𝛿𝑗𝑘  

𝜕𝑓

𝜕𝑣𝑘
,          (10) 

where 𝐴 =
𝑣𝑡

4

2𝜆𝑒𝑖
, 𝜆𝑒𝑖 =

4𝜋𝜀0𝑇𝑒
2

𝑛𝑒𝑒
4𝑍lnΛ

 is the mean free path, 

𝜈𝑒𝑖 =
1

2

𝑣𝑡

𝜆𝑒𝑖
 and 𝑣𝑡 =  𝑇𝑒/𝑚𝑒  is the thermal velocity. 

Note that we used Einstein’s notation in equation (10). 

The e-i collision operator (10) has the 

spherical-harmonics like proper functions [21-23]. Then it 

is judicious to use the spherical system (𝑣, 𝜇 =
𝑣𝑥

𝑣
, 𝜑 =

arctg
𝑣𝑦

𝑣𝑧
). The right hand side of equation (9) is written 

then as: 

𝜔𝑐𝑒   1 − 𝜇2 
3

2  𝑣
𝜕𝑓𝑠

𝜕𝑣
+  𝜇

𝜕𝑓𝑠

𝜕𝜇
  × exp 𝑖𝜔𝑐𝑒 𝑡 + 𝑖𝜑 .                            

(11) 

This shows that 𝑓ℎ  is proportional to exp 𝑖𝜑  and 𝑓𝑠  

is independent of  𝜑. It is therefore practical to expand 

𝑓𝑠(𝑣 ) = 𝑓𝑠(𝜇, 𝑣) in Legendre polynomials, 𝑃𝑙(𝜇): 

𝑓𝑠 =  𝑃𝑙 𝜇 𝑓𝑙
𝑠(𝑣), and to expand the function   𝑓ℎ =

𝑓ℎ(𝜇, 𝑣)𝑒𝑥𝑝⁡𝑖(𝜔𝑐𝑒 𝑡 + 𝜑) , in spherical harmonics, 

𝑌𝑙
1 𝜇, 𝜑 ,of order (𝑙, 𝑚 = 1): 

 𝑓ℎ =   

 𝑌𝑙
1 𝜇, 𝜑 𝑓𝑙

ℎ 𝑣 =𝑙=∞
𝑙=0 exp 𝑖𝜑  𝑃𝑙

1 𝜇 𝑓𝑙
ℎ 𝑣 ,𝑙=∞

𝑙=0  

where 𝑃𝑙
1 𝜇  is the associated Legendre polynomial of 

order (𝑙,𝑚 = 1). Considering these expansions, the high 

frequency equation, (9), can be written as:  

 𝑖𝜔𝑐𝑒 + 𝑙(𝑙 + 1)
𝐴

𝑣3   𝑃𝑙
1𝑓𝑙

ℎ  
 𝑣 =𝑙=∞

𝑙=0 −  

𝜔𝑐𝑒   1 − 𝜇2 
3

2  
𝑣  𝑃𝑙

 𝜕𝑓𝑙
𝑠  

𝜕𝑣
  𝑙=∞

𝑙=0 +

𝜇 
𝜕𝑃𝑙

 

𝜕𝜇

𝑙=∞
𝑙=0 𝑓𝑙

𝑠
  .      (12) 

After some algebra using recurrence relations between 

Legendre polynomials and associated Legendre 

polynomials [21],
 

we have explicitly calculated the 𝑓𝑙
ℎ  as 

functions of 𝑓𝑙−3
𝑠 , 𝑓𝑙−1

𝑠 , 𝑓𝑙
𝑠 , 𝑓𝑙+1 

𝑠  𝑎𝑛𝑑 𝑓𝑙+3
𝑠 , hence: 

𝑓𝑙
ℎ = [𝐺1 𝑙 𝑣

𝜕𝑓𝑙−3
𝑠

𝜕𝑣
+ 𝐺2 𝑙 𝑣

𝜕𝑓𝑙−1
𝑠

𝜕𝑣
+  

𝐺3 𝑙 𝑣
𝜕𝑓𝑙+1

𝑠

𝜕𝑣
+ 𝐺4 𝑙 𝑣

𝜕𝑓𝑙+3
𝑠

𝜕𝑣
+ 𝐺5(𝑙)𝑓𝑙−3

𝑠 +𝐺6(𝑙)𝑓𝑙−1
𝑠   

𝐺7(𝑙)𝑓𝑙+1
𝑠 + 𝐺8(𝑙)𝑓𝑙+3

𝑠 ]𝑖exp 𝑖𝜔𝑐𝑒 𝑡 + 𝑖𝜑 ,     (13) 

where 𝐺1 𝑙 =
 𝑙−2  𝑙−1 

 2𝑙−5  2𝑙−3 (2𝑙−1)
, 

𝐺2 𝑙 =

 −(
𝑙 𝑙+1 

 2𝑙−1  2𝑙+1  2𝑙+3 
+

 2𝑙−3  2𝑙−1  2𝑙+1 −𝑙2 2𝑙−3 − 𝑙−1 2 2𝑙+1 

 2𝑙−3  2𝑙−1 2 2𝑙+1 
),  

𝐺3 𝑙 =
 2𝑙+1  2𝑙+3  2𝑙+5 − 𝑙+2 2 2𝑙+1 −(𝑙+1)2 2𝑙+5 

 2𝑙+1  2𝑙+3 2 2𝑙+5 
+

 𝑙+1 𝑙

 2𝑙+3  2𝑙+1)(2𝑙−1 
,  𝐺4 𝑙 = −

(𝑙+3) 𝑙+2 

 2𝑙+7  2𝑙+5 (2𝑙+3)
.  

 𝐺5 𝑙 =
(𝑙−3)(𝑙−2)2

 2𝑙−5  2𝑙−3 (2𝑙−1)
, 𝐺6 𝑙 =  

−
 2𝑙+3  𝑙−1 𝑙  𝑙−2  2𝑙+1 + 𝑙+1  2𝑙−3  + 𝑙−1 𝑙2 2𝑙−3  2𝑙−1 

 2𝑙−3  2𝑙−1 2 2𝑙+1  2𝑙+3 
,   

𝐺7 𝑙 =

 2𝑙−1 (𝑙+1) 𝑙+2  𝑙 2𝑙+5 − 𝑙+3  2𝑙+1  −(𝑙+1)2 𝑙+2  2𝑙+3 (2𝑙+5)

(2𝑙−1)(2𝑙+1)(2𝑙+3)2 2𝑙+5 
  

and 𝐺8 𝑙 =
(𝑙+3)2 𝑙+4 

(2𝑙+3) 2𝑙+5  2𝑙+7 
. 

 

Note that in this equation, the highly-magnetized plasma 

approximation (𝜔𝑐𝑒 ≫ 𝜈𝑒𝑖  ) is used.  

 

           

5. Static distribution function 

The second term in the left-hand side of the static 

distribution function equation, Eq. (8), can be written 

using spherical coordinates as: 

 𝜔𝑐𝑒  Real(𝑣𝑣⊥exp⁡(𝑖𝜔𝑐𝑒 𝑡) ×  

 Real(
𝜕𝑓 

ℎ  𝑣,𝜇 ,𝜑,𝑡 

𝜕𝑣𝑦
+

𝜕𝑓 
ℎ  𝑣,𝜇 ,𝜑,𝑡 

𝜕𝑣𝑧
) 𝜏𝑐𝑒 =  

𝜔𝑐𝑒

2
 1 − 𝜇2 

3
2 × 
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  𝑣
𝜕𝑓 

ℎ  𝑣,𝜇  

𝜕𝑣
− 𝜇 

𝜕𝑓 
ℎ  𝑣,𝜇  

𝜕𝜇
+

𝑓 
ℎ  𝑣,𝜇  

 1−𝜇2 
 . (14) 

The equation of the static distribution function is then 

given in the spherical coordinates by: 

𝜔𝑐𝑒

2
 1 − 𝜇2 

3
2 ×      

  𝑣
𝜕𝑓 

ℎ (𝑣,𝜇 ) 

𝜕𝑣
−  𝜇 

𝜕𝑓 
ℎ (𝑣,𝜇) 

𝜕𝜇
+

𝑓 
ℎ (𝑣,𝜇)

 1−𝜇2 
   

=
 𝐴

𝑣3  
𝜕

𝜕𝜇
 1 − 𝜇2 

𝜕𝑓 
𝑠(𝑣,𝜇)

𝜕𝜇
   .                  (15)   

We expand, as in the section 4, the  𝑓 
𝑠(𝑣, 𝜇)  in 

𝑃𝑙(𝜇) and the  𝑓 
ℎ(𝑣, 𝜇) in the 𝑃𝑙

1(𝜇), hence: 

𝜔𝑐𝑒

2
 {𝑣

𝜕𝑓𝑙
ℎ  

𝜕𝑣
 1 − 𝜇2 

3
2 𝑃𝑙

1𝑙=∞
𝑙=0 −  1 − 𝜇2 

3
2 𝜇

𝜕𝑃𝑙
1  

𝜕𝜇
𝑓𝑙
ℎ +

 1 − 𝜇2 1/2𝑃𝑙
1𝑓𝑙

ℎ} =
𝐴

𝑣3
 𝑙 𝑙 + 1 𝑃𝑙  𝑓𝑙

𝑠𝑙=∞
𝑙=0 .                        

(16) 

 After some algebra  using recurrence relations 

between Legendre polynomials, 𝑃𝑙 𝜇 ,  and associated 

Legendre polynomials,  𝑃𝑙
1(𝜇) , this equation (16) is 

written as follows: 

𝜔𝑐𝑒

2
  { 𝐺9 𝑙 𝑣

𝜕𝑓𝑙−3
ℎ  

𝜕𝑣
+ 𝐺10 𝑙 𝑣

𝜕𝑓𝑙−1
ℎ  

𝜕𝑣
+ 𝐺11 𝑙 𝑣

𝜕𝑓𝑙+1
ℎ  

𝜕𝑣
+

𝐺12 𝑙 𝑣
𝜕𝑓𝑙+3

ℎ  

𝜕𝑣
+   

 𝐺13 𝑙 𝑓𝑙−3
ℎ + 𝐺14 𝑙 𝑓𝑙−1

ℎ + 𝐺15 𝑙 𝑓𝑙+1
ℎ

 

+𝐺16(𝑙)𝑓
𝑙+3
ℎ } =

𝐴

𝑣3
 𝑙(𝑙 + 1) 𝑓

𝑙
𝑠 𝑣 ,

 
         (17) 

                             

where 𝐺9 𝑙 = −
(𝑙−3) 𝑙−2  𝑙−1 𝑙

 2𝑙−5  2𝑙−3 (2𝑙−1)
,  𝐺10 𝑙 =

 𝑙−1 𝑙 𝑙+1  𝑙+2 

 2𝑙−1  2𝑙+1  2𝑙+3 
+

 𝑙−1 𝑙 (𝑙−1) 𝑙+1  2𝑙−3 +𝑙 𝑙−2  2𝑙+1 + 2𝑙+1  2𝑙−1  2𝑙−3  

 2𝑙−3  2𝑙−1 2 2𝑙+1 
 

𝐺11 𝑙 =

 𝑙−1 𝑙(𝑙+1) 𝑙+2 

 2𝑙+3  2𝑙+1  2𝑙−1 
−

 𝑙+1  𝑙+2   𝑙+1  𝑙+3  2𝑙+1 + 𝑙+2 𝑙 2𝑙+5 + 2𝑙+5  2𝑙+3  2𝑙+1  

 2𝑙+1  2𝑙+3 2 2𝑙+5 
  

𝐺12 𝑙 =
 𝑙+1  𝑙+2 (𝑙+3) 𝑙+4 

 2𝑙+7  2𝑙+5 (2𝑙+3)
, 𝐺13 𝑙 =

(𝑙−3)2 𝑙−2  𝑙−1 2𝑙

 2𝑙−5  2𝑙−3 (2𝑙−1)
 , 

𝐺14 𝑙 =

−
𝑙3(𝑙−1)2 𝑙−2 

 2𝑙−3  2𝑙−1 2 −
 𝑙+1 𝑙2(𝑙−1)3

 2𝑙+1  2𝑙−1 2 −
(𝑙−1)2𝑙 𝑙+1 2 𝑙+2 

 2𝑙−1  2𝑙+1  2𝑙+3 
+

 𝑙−1 𝑙

(2𝑙−1)
,  

 

𝐺15 𝑙 =

 𝑙+2 3(𝑙+1)2𝑙

 2𝑙+1  2𝑙+3 2 +
 𝑙+3  𝑙+2 2(𝑙+1)3

 2𝑙+5  2𝑙+3 2 +
 𝑙+2 2(𝑙+1)𝑙2(𝑙−1)

(2𝑙−1) 2𝑙+1  2𝑙+3 
−

(𝑙+1)(𝑙+2)

2𝑙+3
 and 𝐺16 𝑙 = −

 𝑙+4 2(𝑙+3) 𝑙+2 2(𝑙+1)

(2𝑙+3) 2𝑙+5  2𝑙+7 
. 

 

This equation coupled with the 𝑓𝑙
ℎ  formula, (Eq. 13), 

allows us to determinate the different  components,  

𝑓𝑙
𝑠(𝑣),  of the static distribution function by knowing 𝑓0

𝑠 

as a boundary condition. The zeroth-order static 

distribution function corresponds to the non-perturbed 

(by the magnetic field) distribution function of electrons.  

It can then be estimated by considering the 

thermodynamic equilibrium as a Maxwell function. At this 

order (zero), the high frequency function vanishes. 

More interest is given to the second anisotropy, 𝑓2
𝑠 ,  

which is responsible for temperature anisotropy, so: 

𝑓2
𝑠 =

1

12
 
𝜔𝑐𝑒

𝜗𝑒𝑖  𝑣 
  (  

36

35
𝑣
𝜕𝑓1

ℎ  

𝜕𝑣
−

96

35
𝑣
𝜕𝑓3

ℎ  

𝜕𝑣
−

40

77
𝑣
𝜕𝑓5

ℎ  

𝜕𝑣
−

960

77
 𝑓5

ℎ −
2

7
𝑓1
ℎ +

68

7
𝑓3
ℎ),           (18)         

  where 𝜗𝑒𝑖(𝑣)  is the velocity-dependent frequency 

relative to electrons having a velocity 𝑣 .               

         Neglecting higher-order components behind the 

𝑓0
𝑠  component, considering that 𝑓𝑙+2

𝑠 ≪ 𝑓𝑙
𝑠 , this last 

equation can be written as: 

𝑓2
𝑠 =  

𝜔𝑐𝑒

12𝜗𝑒𝑖  𝑣 
×          

  −0.06857𝑣
𝜕𝑓0

𝑠

𝜕𝑣
+ 0.01904𝑣

𝜕

𝜕𝑣
 𝑣

𝜕𝑓0
𝑠

𝜕𝑣
  .  (19) 

 

  6. Temperature anisotropy 

By limiting the expansion of the distribution 

function in Legendre polynomials to second order, the 

parallel temperature 𝑇∥ = 𝑚𝑒𝑣∥
2        , where the symbol   

stands for average value, is given by: 

𝑛𝑒𝑇∥ = 𝑚𝑒  𝑣∥
2𝑓𝑑3𝑣 = 

𝜋𝑚𝑒  𝜇
2𝑣4  

𝑓0 𝑣 + 𝑃1 𝜇 𝑓1 𝑣 +

𝑃2 𝜇 𝑓2 𝑣 
 𝑑𝑣𝑑𝜇 =                

  
4

3
𝜋𝑚𝑒  𝑣

4 𝑓0 𝑣  𝑑𝑣 −
8

15
𝜋𝑚𝑒  𝑣

4 𝑓2 𝑣  𝑑𝑣.  

                                              (20)                                                                          

 It is important to note that the high-frequency 

distribution function does not contribute to the 

temperature since its average over the cyclotron period 

time vanishes  𝑓ℎ~exp⁡(𝑖𝜔𝑐𝑒 𝑡) . The zeroth order 

distribution function corresponding to the plasma not 
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being affected by the magnetic field  is considered to be a 

Maxwellian : 

𝑓0 𝑣 =
𝑛𝑒

𝑣𝑡
3 2𝜋 3/2 exp⁡(−

𝑣2

2𝑣𝑡
2). Consequently, the second 

anisotropic distribution function ( Eq. 19), can be written 

as follow: 

𝑓2
𝑠 = − 

𝜔𝑐𝑒

𝜈𝑒𝑖
  

𝑛𝑒

𝑣𝑡
3 2𝜋 3/2 ×             

   0.011809
𝑣5

𝑣𝑡
5 − 0.0057

𝑣7

𝑣𝑡
7 exp  −

𝑣2

2𝑣𝑡
2 .  (21) 

Computing the integral in Eq.  (20), the explicit 

expression of 𝑇∥ is found to be: 

𝑇∥ = 𝑇  1 + 𝑎
𝜔𝑐𝑒

𝜈𝑒𝑖
 ,                          (22) 

where 𝜈𝑒𝑖  is the e-i collision frequency and 𝑎 ≈ 1.93 . 

The perpendicular temperature, 𝑇⊥ =
1

2
𝑚𝑒𝑣⊥

2       , is given 

by: 

𝑛𝑒𝑇⊥ =
1

2
𝑚𝑒  𝑣⊥

2𝑓𝑑3𝑣 = 𝑚𝑒  (1 − 𝜇2)𝑣4(𝑓0 +  

𝜇𝑓1 +
1

2
(3𝜇2 − 1)𝑓2)𝑑𝑣𝑑𝜇 

=
4

3
𝜋𝑚𝑒  𝑣

4𝑓0𝑑𝑣 −
4

15
𝜋𝑚𝑒  𝑣

4𝑓2𝑑𝑣.      (23) 

In the case of the Maxwellian isotropic distribution 

function, the 𝑇⊥  is calculated explicitly from the above 

equation to be: 

𝑇⊥ = 𝑇  1 +
𝑎

2

𝜔𝑐𝑒

𝜈𝑒𝑖
 .                          (24) 

The temperature anisotropy is then given by: 

𝑇∥   

𝑇⊥
=

1+𝑎
𝜔𝑐𝑒
𝜈𝑒𝑖

1+
𝑎

2

𝜔𝑐𝑒
𝜈𝑒𝑖

.                                 (25) 

It is very clear that this anisotropy depends on the ratio of 

the cyclotron frequency to the collision frequency.  This 

equation shows that the anisotropy tends to 1 for a high 

collision frequency (
𝜔𝑐𝑒

𝜈𝑒𝑖
≪ 1) which is in agreement with 

the 1D numerical simulation carried out by Takizuka et al. 

[24], despite that  Eq. (25)  is limited to highly 

magnetized plasma (
𝜔𝑐𝑒

𝜈𝑒𝑖
≫ 1 ).  

We have presented, on the Fig. 1, the anisotropy on the 

distribution function.  

 

Figure 1. Anisotropic distribution function (arbitrary unit) 

for different values of the magnetic field 

This figure shows that the anisotropy is negative for low 

velocities (𝑣 ≲ 2𝑣𝑡 ) which corresponds to a hotter plasma 

in the parallel direction. However in the high velocity 

region (𝑣 ≿ 2𝑣𝑡 )  the anisotropic component of 𝑓  is 

positive and more important. This shows that the fast 

electrons are in fact responsible for the anisotropy. We 

present in Fig. 2 the temperature anisotropy as a function 

of the parameter  
𝜔𝑐𝑒

𝜈𝑒𝑖
. 

 

Figure 2. Temperature anisotropy as a function of the rate 

𝜔𝑐𝑒

𝜈𝑒𝑖
  

This shows that the anisotropy becomes important as the 

applied magnetic field becomes intense, and this 

anisotropy undergoes a saturation in the vicinity of the 

value 2. 

 

7.  Conclusion 

To investigate the temperature anisotropy in magnetized 

plasma we have analytically calculated the distribution 

function for a highly-magnetized plasma. Using this 

distribution function, we have calculated the temperature 

in the parallel and perpendicular directions. We have 

shown that the temperature is anisotropic and that it is   
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depend on the magnetic field and on the collision 

frequency. The numerical calculus shows that the 

anisotropic distribution function is negative in 

low-velocities region and positive in high-velocity region 

over a larger band, where the maximum is more 

important than the minimum. This shows that fast 

particles are responsible for the temperature anisotropy. 

In this study, we have limited the expansion of the 

distribution function to  second order which is sufficient 

for the study of some physical phenomena occurring in 

magnetized plasma such as Weibel instability. The 

plasma is hotter in the parallel direction which can be 

interpreted by the fact the plasma heating by momentum 

transfer due to collision is more efficient in the parallel 

direction. This analytical result could have  applications 

for several physical phenomena occurring in magnetized 

plasma: the Weibel instability where the growth rate of 

instability depends on 
𝑇∥   

𝑇⊥
 and the Alfvén wave where 

dispersion depends on 
𝑇∥   

𝑇⊥
. As an extension to this work, 

we will calculate the temperature anisotropy for a 

relativistic magnetized plasma. 
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